If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2+7x-3=0
a = 15; b = 7; c = -3;
Δ = b2-4ac
Δ = 72-4·15·(-3)
Δ = 229
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{229}}{2*15}=\frac{-7-\sqrt{229}}{30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{229}}{2*15}=\frac{-7+\sqrt{229}}{30} $
| -10-2v-5v=-7v-10 | | -3(x+4)+15=2(3-2x) | | 31^x-86=0 | | 1-3=8-2x | | 6(x+5)-3(x-2)=12x+18* | | -11=8(n-2)+5(1+6n) | | t²-4t-5=0 | | 2x3=x | | -4d=-6d+2d | | -1/4x=-25 | | -10=8(x+2)-3(x-3) | | 34=19-5x2 | | -9=t | | 252.17=15.1p | | 9(x+4)^2-16=0 | | 0=-2(1+6b)+6(4+2b) | | 5+6f=+5 | | -45=x+19 | | 0.4x=-1.8 | | 3+5x-7x-4=-49 | | 55+4x=75 | | (4x+3)+(2x+9)=18- | | 9(x+4)^2+16=0 | | 8(m-7)-8(m+1)=-64 | | 15x-25=180 | | 4-4(3a+3)=16 | | -9-q=-9-9 | | 4(2m-6)=16 | | -4x-2=-6x+4 | | -4c+20=0 | | n/6-18=2 | | 22+5g=72 |